
Measuring Network Utilisation at the University of Melbourne

Douglas Ray

Information Technology Services
University of Melbourne

ABSTRACT

Having decided what needs measuring and how to catch it, there is still many a slip
between the initial configuration of applications and the final product, the network utilisa-
tion report.

Our task was measurement and characterisation of national and international traffic with
areas of the university. We discuss how the functionality of NNStat is applied to this
task, and the additional features required to incorporate NNStat within a reliable report
generator for network statistics.

Some preliminary performance measurements are presented, and their implications con-
sidered.

This paper was presented at the AARNet Networkshop during December 1993 (Melbourne, Australia).

Douglas Ray has worked within the ITS Networks and Communications Group at the University of Mel-

bourne for the past four years. He has regularly given presentations at Networkshop and AUUG confer-

ences. He can be reached at either doug@unimelb.edu.au or doug@munnari.oz.au

DEC, ULTRIX and DECstation are trademarks of Digital Equipment Corp.

SunOS is a registered trademark of Sun Microsystems Corp.

Solbourne, S4000 and OS/MP are registered trademarks of Solbourne Computer, Inc.

© Information Technology Services, The University of Melbourne, 1993

This work is copyright. Other than for the purposes of and subject to the conditions prescribed under the Copyright Act, no

part of it may in any form or by any means (electronic, mechanical, microcopying, photocopying, recording or otherwise)

be reproduced, stored in a retrieval system or transmitted without prior written permission.

Reprinting single copies for personal academic non-commercial use is permitted.

- 2 -

0 Context

1 Task

2 Network Topology

3 Sources of Info

3.1.1 Cisco Routers
3.1.2 Stats Servers

3.1.2.1 Departmental Stats Servers
3.1.2.2 Central Stats Server

3.2 Geographic Info

4 Algorithm and Constraints

4.1 Algorithm
4.2 Constraints of the Algorithm

5 NNStat and Constraints

5.1 Intro
5.2 Constraints of NNStat

5.2.1 Single statspy per Server
5.2.2 Polling Rewrite Bug
5.2.3 NNStat Config Limits
5.2.4 Subnet Bug
5.2.5 Select Bug?
5.2.6 Separate Configs for statspy and collect

6 Implementation Architecture

6.1 Server Platform
6.2 Software

6.2.1 Config Builder
6.2.2 NNStat Traffic Logger
6.2.3 Postprocessing

6.2.3.1 Input
6.2.3.2 Output
6.2.3.3 Reconcilliation
6.2.3.4 Geographic totals pipeline
6.2.3.5 Type-of-Service totals pipeline

7 Performance Considerations

8 Ancillary Info

8.1 Time
8.2 System Downtime
8.3 Anomaly Tagging
8.4 Config Version Tagging

9 Conclusions

- 3 -

0 Context

This paper explores a specific project in network usage monitoring, currently in use at the University of
Melbourne. The project was partly prompted by the perception that at some stage charging for external
network traffic may become necessary within the University.

Usage is a fiddly thing to define, because unless you do protocol emulation on every connection you can’t
always determine which side of a connection initiated a data transfer. This paper does not address that
problem.

To date, the possible mode of charge has been assumed to be a measure of volume usage, possibly weighted
by type-of-service. Byte and packet measures have been derived, and per-service figures are kept.

Within this limited frame there are many possible strategies. Links have fixed bandwidth, routers have
upper limits on packet switching, so depending on the degree of saturation, and whether a route is saturated
at link or at gateway, different weightings of byte and packet measures may be applicable − eg, straight
byte-based accounting for saturated links, and a combination of byte and packet accounting for non-
saturated links and router bottlenecks.

However, this begs the question of what is trying to be achieved in charging. The rationale behind the
above example is that charges should directly reflect the cost of the infrastructure (links and routers) being
used. Further, the implication is that charging is a means of recouping costs. This ignores the utility of
charging in managing usage patterns.

If you’re trying to curtail usage of saturated links, there’s not much point putting a financial premium on
their use unless the person being charged knows when they are suffering the premium. To effect such
behaviour it is more effective − not to mention much simpler − to specify peak usage periods, and charge a
premium on usage in those periods.

These, and other strategies, and references, can be found in Roger Clarke’s paper for this conference. My
concern is not so much the charging strategy as the method of measuring usage. The foregoing discussion
serves to emphasise that usage has as many meanings as one chooses to define. The definition we’re after
is the one which saves us money.

1 Task

The task I was presented with was to measure and characterise types of traffic between parts of the Univer-
sity and the rest of Victoria, greater Australia, and overseas. (By characterisation of traffic I mean measur-
ing various types of services used − telnet, mail, ftp, etc.)

It quickly became apparent that it would be useful to log a fourth class separately: traffic with the central
AARNet servers.

Only IP traffic is considered. This forms the bulk of traffic exiting the campus network.

"Parts of the University" was clarified to be subnets. This may need to be refined in the light of possible
charging applications. If one assumed we wanted to generate bills at a departmental or faculty level there
are a few problems we must solve.

A) Departments with mixed subnets

This is simple − add the subnets − and we probably need to do this anyway. Howev er, there is a substantial
chunk of work in adding the further level of abstraction, department, on top of the existing subnet-based
processing.

B) Subnets with mixed departments

This is the killer. The best solution is not to mix departments on a subnet, but given our current subnet
usage that would be impractical. Also, there are some departments that naturally have hosts dotted all over
campus; eg, the library. All solutions, other than segregation of departments at the subnet level, require
changing the granularity of local peer from subnet to host, and collating the host info by department. (For
a note on the practicality of this, see section 7). Even if we presume that performance limits would allow
this, we also need procedures which enable automatic updates of our stats monitor config whenever new
hosts appear, move between departments, or when departments move between subnets.

One solution is to collate IP’s by DNS zone name. This presumes that the zone names in the DNS ade-
quately reflect departmental structure for billing purposes.

- 4 -

If they don’t, then a separate table of IP number/department pairs (or hostname/department pairs, with the
IP number being found by DNS query). This assumes that the list will be maintained − which requires
extra work on updates − or that the DNS files will be automatically regenerated from the list. It also
assumes that those departments running their own nameservers remember to forward information of new
hosts to us... information for which they will be billed.

C) Subnets with shared resources

As an example, we have various hosts in lecture theatres, for which someone would have to work out a
billing system.

2 Network Topology

We measure traffic on the following network.

AARN National Hub

& UoM Central Hub

FDDI Spine & Routers

(NNStat)
noc

Uni. of Melb. Ether Spine

usa.gw (Mbone)
savoyuneeda

(named)
plaza
(Archie)fiji.gw

To PNGTo FijiTo USA

To Other

Victorian

Institutions

National
gateway

vovo
(NNStat)

vic.gw
vic2.gw
vic-slip

AARNet Spine

To Other

States

png.gw

rb1.rtr rb2.rtr

The key points of this topology are as follows. The AARNet spine has
- servers
- a link to Internet via the USA
- links to other states via the national router
- links to Victorian institutions via the Victorian router

One of these latter links connects to the University of Melbourne’s ethernet spine. The UoM ether spine

- 5 -

supports two routers making redundant connections to the main FDDI ring around campus. (There are a
further 6 cisco routers on the FDDI ring.)

The University is primarily a class B network using a subnet mask of 255.255.255.0. Only a handful of
subnet numbers are not in use. Variable length subnet masks have recently been enabled, but the implica-
tions of this for our stats reporting methodology are not discussed here.

3 Sources of Info (on campus)

3.1.1 Cisco Routers
3.1.2 Stats Servers
3.1.2.1 Departmental Stats Servers
3.1.2.2 Central Stats Server
3.2 Geographic Info

3.1.1 Cisco Routers

The cisco routers can be configured for IP logging. This gives IP source and destination pairs, with packet
and byte counts. The drawbacks of this approach are:

- can’t distinguish type-of-service.
(for this we’d need the port numbers)

- no control of granularity: must collate info for each host-host
pair (not to mention download the info across the network)

- load on the routers
(IP logging imposes a substantial CPU overhead on ciscos)

- doesn’t giv e geographic location of peer.

3.1.2 Stats Servers

Dedicated stats servers have sev eral advantages over router accounting. Using generic packet filtering, we
can select by

- fields in the ethernet header
- fields in the IP header
- derived info ("virtual fields": eg, network and subnet)

This makes it easy to differentiate type-of-service. Dedicated stats servers impose little or no performance
overhead on network load. (We find this functionality in the NSFnet software package, NNStat, which is
used on the AARNet stats server vovo and on our stats server.)

If we use stats servers, where do we put them?

3.1.2.1 Departmental Stats Servers

A dedicated stats server on each subnet would have the advantage of measuring real traffic on the subnets,
rather than just traffic crossing a cisco interface.

However, though this could be useful for maintenance and load prediction, it is not part of the task under
discussion. It is also particularly expensive, both in equipment and configuration time.

3.1.2.2 Central Stats Server

A single stats server on the UoM ether spine would see each packet entering or exiting the University.
Results can be processed locally on the server rather than being shipped across the network, and the pres-
ence of the server doesn’t affect network performance. This is the approach we’ve taken.

3.2 Geographic Info

Remember, our task is to separate Victorian, Australian and international traffic. How do we get the geo-
graphic location of the peer?

Traffic crossing the UoM ether spine will have an ethernet address (either source or destination) of the vic-
torian gateway. This differentiates the traffic we want from any other stuff, but still doesn’t giv e us the
geographic info we need.

The only other source of information at the UoM ether spine is the IP address of the peer. That means we
need a list of network numbers and their geographic location. What range of network numbers do we

- 6 -

wish to cover? We don’t need (or want) every network in the world. If we had, separately, all Victorian
networks and all other Australian networks, then anything else can be assumed to be overseas. (But all we
really require are those Victorian and Australian nets that talk with us.)

We might consider traceroute (but not for long :). Even with a maximum hop count of two, using tracer-
oute to determine the location of IP numbers would be an excellent way of consuming system resources.
At one extreme one traces every address not currently known, recording Victorian or Australian networks in
lists − then each overseas address generates a trace whenever it occurs. T’other extreme, we maintain a
list of overseas addresses as well... but that list would get rather large. Okay, well, we can cache the over-
seas addresses... but one starts to sense it could be worth looking for a simpler solution.

There’s a file which contains details of all Australian IP networks, on munnari.oz.au: netinfo/status.
Unfortunately, although the network numbers and network names are kept up to date, the geographic infor-
mation is not complete.

Traffic crossing the AARNet spine has an ethernet peer address of the Victorian gateway, the national gate-
way, or the usa gateway (for simplicity we’ll ignore the fiji gateway). This is where we can distinguish our
target geographic classes. Luckily, the AARNet stats server (vovo) already does this, so we can get lists of
Australian and Victorian IP networks from there. We download the files listing Victorian networks and
their Australian network connection peers. This is an adequate approximation of the required "Victorian
and Australian nets that talk with us", ignoring any Victorian nets that talk exclusively with us.

4 Algorithm and Constraints

4.1 Algorithm
4.2 Constraints of the Algorithm

4.1 Algorithm

Here we discuss the algorithm used for sorting and collating the traffic.

As mentioned above, the common factor in all traffic we’re interested in is that, when crossing the UoM
ether spine, it has either a source or destination ethernet address of the victorian gateway. This gives us the
outer tests of our algorithm. Given the lists of network numbers we can easily derive the basic structure,
which uses eight sets of tests to record traffic in and out of each of our four target locations:

if ether source = vic.gw
then {

if IP source network is in VICnets
record in incoming-traffic-from-vic

else if IP source subnet is in AARNspine
record in incoming-traffic-from-aarn

else if IP source network is in AUSnets
record in incoming-traffic-from-aus

else
record in incoming-traffic-from-os

}
else if ether destination = vic.gw
then {

if IP destination network is in VICnets
record in outgoing-traffic-to-vic

else if IP destination subnet is in AARNspine
record in outgoing-traffic-to-aarn

else if IP destination network is in AUSnets
record in outgoing-traffic-to-aus

else
record in outgoing-traffic-to-os

}

- 7 -

From here, the pseudocode "record" must be expanded to a block of tests which logs at the particular level
of granularity required. (This will be discussed later: see section 6.2.1.) In our context this means a series
of tests to distinguish port information, and special tests for particular servers and subnets.

4.2 Constraints of the Algorithm

Traffic with addresses not registered in our lists of Victorian and Australian networks will be wrongly
attributed to overseas traffic. Also, networks are dynamic. More arrive continually, on something between
a daily and weekly basis. To address these points we need timely updates of the network lists.

Unavoidably, we also need to rebuild the config of our network monitoring software on a daily basis, to
include updated network lists in an automated and robust fashion. (Or, rather, we need to check to see if it
needs rebuilding.)

While doing all this it would be prudent to log changes of config with detail sufficient that we can reverse
any problems. If someone broadcasts a bogus net we don’t want it on our server forever.

5 NNStat

5.1 Intro
5.2 Constraints of NNStat
5.2.1 Single statspy per Server
5.2.2 Polling Rewrite Bug
5.2.3 NNStat Config Limits
5.2.4 Subnet Bug
5.2.5 Select Bug?
5.2.6 Separate Configs for statspy and collect

5.1 Intro

These comments apply to version 3.2 of NNStat, which was the current version at the start of 1993. A beta
release of version 3.3 has been recently released.

NNStat is distributed as source code for Sun and DECstation platforms. It relies on a permissive mode
network interface, using the NIT device on SunOS and the packetfilter option on ULTRIX. Two daemons
do most of the work. Statspy, the monitor process, scans packets available on the network interface and
matches them against a pattern config to control various counting operations. Collect, the logger process,
periodically interrogates the statspy monitor and logs the information in files. A third tool, rspy, allows
interactive query and control of the statspy monitor. (Rspy is only used for diagnostic purposes in our
system.)

Counting operations are object-based, and the collect logger can be told to look for all objects or given sub-
sets of objects. Checkpoint and logging periods are constant for a given collect process; using several col-

lect processes, one can log various objects at different temporal resolutions.

Three periods − the polling, checkpoint and clear intervals − can be set independantly for each collect pro-
cess. At each polling period, collect gathers totals for its chosen objects from statspy, and logs them to
files. Subsequent polls overwrite the previously logged record, until the checkpoint period expires, at
which time the next record to be logged is appended to the file. Totals between checkpoints (and polls) are
cummulative until the clear period expires, at which point all counters are reset.

5.2 Constraints of NNStat

A number of constraints are imposed by the current implementation of NNStat.

5.2.1 Single statspy per Server

One can only have one monitor process − and one active config − per server. Because of this we can’t test
configs on the production server without interrupting stats collection. We either suffer downtime or use a
developmental server.

5.2.2 Polling Rewrite Bug

The method NNStat uses for the collect processes to log info to files is buggy: logs sometimes acquire
inter-record garbage. Because of this the log files must be parsed with some non-intuitive tests during
postprocessing.

- 8 -

5.2.3 NNStat Config Limits

There are various fixed limits in the NNStat code, some of which aren’t documented. These limits can be
changed by recompiling the source, but any giv en config must work within the limits of the currently
installed executables. The limits which we know of are:

- maximum number of objects for collector
- maximum number of cases in a "select" statement
- maximum number of parameters for object class definitions

These limits have all been raised in our installation. Some config overflow errors are silently ignored, some
trigger core dumps − either way, we must check that they aren’t exceeded when building the config.

5.2.4 Subnet Bug

There is a bug in version 3.2 preventing access to subnet information on little-endian architectures (eg,
DECstation). A patch for this was found by Gavin Stone-Tolcher (ccgavin@cc.uq.oz.au).

5.2.5 Select Bug?

There may be a bug in the number of cases recognised by the "select" statement − either that or a confusion
of datatypes has led to only half the specified maximum being useable. This will be confirmed when our
developmental server is configured.

5.2.6 Separate Configs for statspy and collect

The monitor process and logging processes look at separate config files for essentially the same informa-
tion. This marginally complicates building the configuration.

6 Implementation Architecture

6.1 Server Platform
6.2 Software
6.2.1 Config Builder
6.2.2 NNStat Traffic Logger
6.2.3 Postprocessing

6.1 Server Platform

The production server, noc, is a DECstation 5000/250 with 64M ram and 2G disk, running ULTRIX 4.3. *
While noc was being coaxed to sporadic life, the project was supported on a Solbourne S4000 with 40M
ram and 1G disk, running OS/MP 4.1a.3 (licensed SunOS, ˜4.1.2).

6.2 Software

The present system is cobbled together from scripts. With marginal editing of reality, it can be divided into
the four functional units shown in the figure below. (Most of the NNStat traffic logger and a good portion
of the postprocessing scripts were donated by Robert Elz, from his work on the AARNet stats server.)

(In the following few figures, executable modules are shown in the upper portion and data files in the lower
portion of each diagram.)

* This is not an endorsement of DEC.

- 9 -

NNStat

Logger Postprocessing

config traffic

logs summaries

subtotals & reports

NNStat

Config

Builder

executables

data files

dhr 26.11.93

Report

Builder

System Overview

My aim is to automate the procedure as far as possible. Human intervention should only be required for
qualitative evaluations, during the report generation phase. Currently, both the config creation and traffic
logging run untended. Postprocessing is still initiated manually, pending rationalisation of error reporting
and satisfactory error handling. Report generation facilities are meagre.

6.2.1 Config Builder

The config builder updates the NNStat config with new Victorian and other Australian network numbers.
It sifts through the network lists obtained from vovo, and when new numbers are found, incorporates them
into the config. It maintains version details for the config, logs which vovo file the new numbers came
from, and logs when a new config is installed. The figure below giv es a (rather simplified) view of the pro-
cess.

There are three main parts in the code. First there’s a module that manages the network numbers. This is
called nightly from cron. When new numbers are found, it calls the config builder module, which reassem-
bles the NNStat config from various schemas. Finally, if the config was rebuilt successfuly successful, the
config builder calls a module which installs the config.

- 10 -

config installer

version

subnet

tests

schema

main
tests
schema;

stubs

port

labels
enum.noc

display

format

lists

net

logs

config

parm.noc

extract new nets;

regenerate net lists
config builder

mailbox

(data
from

vovo)

stats

all tests

executable scripts

& binaries

data files

OS Scheduler (cron)

data flow:

control:
dhr 26.11.93

NNStat Config Builder

N
N

S
ta

t
ru

n
-t

im
e

d
ir

ec
to

ry

Integrated within this code are checks to ensure that a new config doesn’t exceed NNStat’s limits (insofar as
these are known). If these are exceeded, the new config will not be installed, future config updates will be
suspended, and mail sent to the administrator. Before this happens, when the config expands beyond cer-
tain thresholds, warning mail is sent to the administrator. This will allow a new set of executables to be
compiled and installed before config updates are interrupted.

The main schema for the config implements the algorithm discussed earlier (see section 4.1). The blocks
of tests referred to record subnet and type-of-service, and, for the most part, have a common structure.
Accordingly, we generate all eight blocks by expansion of a single schema of subnet tests − this simplifies
modifications if we need to change the level of detail of information logged.

The block which records traffic into the University from Australian networks has the following form. First,
the total for all incoming ethernet traffic is logged. Traffic destined for hosts on the UoM ether spine
(excluding the fddi routers) is recorded, and then we deal with traffic heading for the fddi ring. For traffic
bound for the FDDI ring, exceptions are handled − munnari. We keep track of munnari’s traffic because it
supplies national services. All IP traffic is logged, and then, separately, TCP traffic and UDP traffic.
Source and destination ports are logged separately for TCP and UDP. Having dealt with munnari, we han-
dle the rest of the University similarly, logging first IP traffic totals, then subtotals for TCP matched on
source port, TCP matched on destination port, UDP matched on source port and UDP matched on destina-
tion port. The destination subnet is recorded, to give some idea of which parts of the University are in
communication.

- 11 -

traffic into campus from ausnets
record destination-subnet
select Ether.destination {
case (HOSTS-ON-UoM-ETHER-SPINE)

record Ether.destination
case ("rb1.rtr", "rb2.rtr"): {

to campus on FDDI ring:
if IP.destination is munnari {
record IP.destination
if TCP.destinationport is in TCP-PORTS-LIST
record TCP.destinationport

if TCP.sourceport is in TCP-PORTS-LIST
record TCP.sourceport

if UDP.destinationport is in UDP-PORTS-LIST
record UDP.destinationport

if UDP.sourceport is in UDP-PORTS-LIST
record UDP.sourceport

}

All subnets (including munnari traffic):
record IP.destination-subnet
if TCP.destinationport is TCP-PORTS-LIST
record TCP.destinationport, IP.destination-subnet

if TCP.sourceport is TCP-PORTS-LIST
record TCP.sourceport, IP.destination-subnet

if UDP.destinationport is UDP-PORTS-LIST
record UDP.destinationport, IP.destination-subnet

if UDP.sourceport is UDP-PORTS-LIST
record UDP.sourceport, IP.destination-subnet

}
default : { # shouldn’t be anything in here.

record Ether.destination, Ether.source
record IP.destination, IP.source

}
} # end select Ether.dst

6.2.2 NNStat Traffic Logger

The traffic logger is shown (almost verbatim) in the figure below. The system is started at boot time from
rc.local, and restarted at midnight from cron. There is a script to control starting the NNStat processes
(restart.noc) and another which stops them (stop.noc).

- 12 -

NNStat Traffic Logs

(PIDS)

job control files parm.noc

config

enum.noc

display

format

collect.noc collect

restart.noc

stop.noc

statspy

stamp

daily

management logs

data files

executable scripts

& binaries

OS boot script (rc.local)

OS Scheduler (cron)

data flow:

control:dhr 26.11.93NNStat Logger

The collect processes log information in files named after the object being logged, one file per object, and
given a suffix indicating the time at which the collect process was invoked. The timestamp causes the col-

lect processes to log to different files (unless processes are started within the same minute).

We choose to stop and restart the statspy and collect processes daily. This means that we get a new set of
log files each day, which simplifies expunging corrupted logs from the data. It also makes it easy to install
a new config when one is required. (We could manually update the runtime config on statspy via rspy, but
as we have to generate the new config anyway, and we have an excuse for stopping the logging, there would
be no point in such sophistication.)

Process IDs are recorded and timestamped whenever the processes are stopped or restarted, and a comment
can be automatically inserted in the log when the scripts are run manually. When statspy is started it gives
a commentary on what it thinks of your config. This diagnostic message is superficially parsed by the
start-up script (restart.noc) to detect key words ("error", "warning"), and when problems are detected mail
is sent to the administrator.

One action not represented on the diagram is the weekly transfer of the traffic logs. Once a week, between
stopping and restarting the NNStat processes, the daily script renames the current logging directory with a
timestamp and recreates the logging directory. (Our reports are based on weekly aggregates).

6.2.3 Postprocessing

6.2.3.1 Input
6.2.3.2 Output
6.2.3.3 Reconcilliation
6.2.3.4 Geographic totals pipeline

- 13 -

6.2.3.5 Type-of-Service totals pipeline

Under postprocessing we subsume the evils that happen after the week’s data has been logged. The pro-
cessing modules of this section form a number of data pipelines applicable to different groups of objects.

6.2.3.1 Input

The input, the raw traffic log files from the NNStat logger, are byte and packet totals sampled cummula-
tively over each day for a series of "data objects". We choose to generate weekly totals. The records for a
given object will be distributed over a number of files, a new file for each time the collect processes are
restarted.

The objects we log can be divided into two groups. Most are sampled at 30 minute intervals and check-
pointed only at the 24h mark. A smaller group are sampled at 5 minute intervals and checkpointed every
15 minutes. The latter are the IP logs used for generating total traffic figures for each target geographical
destination, and containt subtotals for each subnet.

Below is a sample NNStat record for information coming into campus from Australian networks. (Local
subnet and subtotals have been overwritten for mystique). The first figure after the subnet key is the num-
ber of packets, and the second figure the number of bytes. "Total Count" sums the packet information.

OBJECT: F.IN.dstsubn-all.from-ausnets.ip Class= freq-all-bytes [Created: 00:00:34 11-21-93]
ReadTime: 00:00:00 11-22-93, ClearTime: 00:00:40 11-21-93 (@-86360sec)
Total Count= 649370 (+0 orphans)
Total Bytes= 48370339B #bins = 43

[128.250.aaa.0]= 999999 &99999999B (75.6%) @-0sec
[128.250.bbb.0]= 88888 &8888888B (6.9%) @-17sec
[128.250.ccc.0]= 77777 &7777777B (4.9%) @-0sec
[128.250.ddd.0]= 66666 &6666666B (2.4%) @-0sec
[128.250.eee.0]= 55555 &5555555B (2.2%) @-11sec
[128.250.fff.0]= 44444 &444444B (1.8%) @-7sec
...

The former, less frequently sampled group contain objects logging type-of-service details for TCP and
UDP ports for each subnet. Below is a sample recording TCP source-port details for traffic from Aus-
tralian networks into campus. (Local subnet and subtotals have been overwritten from boredom).

OBJECT: S.IN.dstsubn.from-aus.tcp.srcports Class= matrix-all-bytes [Created: 00:00:34 11-21-93]
ReadTime: 00:00:00 11-22-93, ClearTime: 00:00:41 11-21-93 (@-86359sec)
Total Count= 412647 (+0 orphans)
Total Bytes= 25095824B #bins = 45

[119 "NNTP" : 128.250.aaa.0]= 999999 &99999999B (90.8%) @-0sec
[513 "rlogin|rwho" : 128.250.bbb.0]= 88888 &888888B (2.7%) @-21797sec
[23 "Telnet" : 128.250.ccc.0]= 7777 &7777777B (1.6%) @-21090sec
[25 "SMTP" : 128.250.ddd.0]= 6666 &666666B (1.2%) @-21sec
[20 "FTP data" : 128.250.eee.0]= 5555 &5555555B (1.0%) @-7766sec
[20 "FTP data" : 128.250.fff.0]= 4444 &4444444B (1.0%) @-12179sec
[79 "Finger" : 128.250.ggg.0]= 3333 &333333B (0.4%) @-6410sec
...

6.2.3.2 Output

For each object we generate a single NNStat-style record sumarising the weeks traffic.

6.2.3.3 Reconcilliation

As shown above, each NNStat record contains a header of summary info, and a table of values. When ev er
our postprocessing modules read or write an NNStat record, they verify that the byte and packet totals in
the header are still within a small percentage of the actual sums of the table. (Anomalies are reported and

- 14 -

can be detected by simple string searches of the postprocessing log.) This simple reconcilliation procedure
has detected a number of instances where corrupted data slipped past the initial log parsing. However, it is
probably not foolproof. It would be safer if further reconcilliation phases were introduced within the
pipeline. A good target would be ensuring that the sum of IP traffic is not less than the sum of all TCP and
UDP services.

6.2.3.4 Geographic totals pipeline

Processing for simple sums of IP to and from of the geographic target areas are conceptually straightfor-
ward.

All the records relevant to a given object are collated and the effects of any restarts or clears between
records are removed. The last record is then the accumulation of the weeks data, so this record is
extracted. The results are sorted, with separate tables being produced for packet and byte measures.

This forms our basic pipeline.

ac
cu

m
u

la
te

 r
ec

o
rd

se
q

u
en

ce

so
u

rc
e

+
 d

es
ti

n
at

io
n

ex
tr

ac
t

la
st

 r
ec

o
rd

ca
lc

u
la

te
 p

er
ce

n
ta

g
es

ca
lc

u
la

te
 p

er
ce

n
ta

g
es

ex
tr

ac
t

la
st

 r
ec

o
rd

ac
cu

m
u

la
te

 r
ec

o
rd

se
q

u
en

ce

so
rt

T
C

P
 +

 U
D

P

su
m

 s
er

v
ic

es

su
m

 s
u

b
n

et
s

so
rt

dhr 26.11.93Postprocessing

pipeline for type-of-service matrix objects

pipeline for subnet objects

6.2.3.5 Type-of-Service totals pipeline

A number of extra modules must be inserted into the above unit to handle type-of-service data. Informa-
tion collected for source and destination ports must be combined. Most protocols can be adequately han-
dled in one of two ways, depending on whether they establish a connection with a well-known port number
at one end (sum source and destination values) or both ends (take the maximum of source and destination
values)*. At this point we have possibly several entries for a single subnet, so we must sum matching sub-
net/port combinations. Various services use multiple ports, so we have another module to sum these.
Finally, TCP and UDP information is combined, and then the sorting modules are invoked.

* thanks for this rule of thumb due to Robert Elz

- 15 -

7 Performance Considerations

On our platforms the NNStat processes appear to be CPU-limited. The figures below are from the produc-
tion server, a DECstation 5000/250. They describe performance under the current config, which sets the
resolution of local peer to be at the level of subnet.

The current config logs something over 30M of files per week. The files produced by postprocessing are
less than 2M. This is composed of 541 objects checkpointed daily, and 144 objects checkpointed at 15
minute intervals. The latter form more than 90% of the bulk. Any time-based accounting could substan-
tially increase disk usage.

For the collect processes, size in virtual memory and the resident set size appears to be static and easily
manageable. CPU time is dependant on the number of objects and amount of information per object, but
the total CPU time expended over a 24h period is quite modest.

USER PID %CPU %MEM SZ RSS TT STAT TIME COMMAND
ray 27256 0.0 0.4 1188 200 ? S 0:00 collect -m 644 ...
ray 27248 0.0 0.4 1188 220 ? S 0:28 collect -m 644 ...
ray 27240 0.0 0.4 1188 220 ? S 0:28 collect -m 644 ...
ray 27231 0.0 0.4 1188 216 ? I 1:19 collect -m 644 ...

Of the above processes, the first is collecting information for one object. The middle two are each collect-
ing information on 270 objects. The lower one is collecting information on 144 objects polled at 5 minute
intervals; the upper three are polling statspy at 30 minute intervals.

The statspy process consumes appreciable CPU time, and expands gradually throughout the logging
period. Memory will probably not become a problem, given that we’re restarting the process every 24h −
the process size starts at less than 2M (the snapshot below is 60" after invocation):

USER PID %CPU %MEM SZ RSS TT STAT TIME COMMAND
ray 7495 0.4 2.6 1952 1448 ? S 0:11 statspy parm.noc

and on an average day grew to something over 2M:

USER PID %CPU %MEM SZ RSS TT STAT TIME COMMAND
ray 27219 0.0 3.1 2252 1712 ? S N 149:33 statspy parm.noc

However, it consumed some 9000 seconds of CPU time in the period. Process accounting has shown this to
be the mode, but there are occaisional peaks of 25,000 seconds, which is a substantial portion of the 86,400
seconds of one day. (It would be interesting to see what memory consumption had got to on those days, but
we’ve only just started logging this.)

There’s three things statspy might be spending CPU time on: incrementing counters; working out which
counter to increment; or downloading figures to the collect process.

We hav en’t observed a marked increase in statspy’s CPU consumption during the periodic polls by the col-

lect processes. This implies that CPU usage is basically spent in processing traffic, and we presume domi-
nated by the complexity of pattern matching encoded in the config (ie, working out which counter to incre-
ment). If this is the case then, at peak traffic loads, our current server probably won’t cope with a substan-
tially more complicated config.

We hav e been using the ULTRIX packet filter with the default maximum queue of 32 packets (NNStat auto-
matically requests maximum queue length). (We hav en’t checked what diagnostics we’d receive from
either NNStat or the kernel in the event of an overflow, but will investigate this as soon as the development
server is configured.)

As mooted in the initial discussion of our task (see section 1), subnet resolution may not be sufficient for
some applications. Converting the config from the subnet paradigm to a departmental paradigm − moving
the peer resolution towards individual hosts − dramatically increases the complexity of the config, in the
worst case by more than two orders of magnitude. Clearly we can’t ask CPU time to increase by this fac-
tor. (Nor, for that matter, disk usage, but we can collate host info without logging it to file.)

It remains to be seen whether some intermediate solution is plausible. Answering this reliably requires
determining the CPU cost factors of various formats of config. Note that the actual CPU usage under any
config depends on the profile and quantity of traffic. If reliable estimates of CPU costs are determined,

- 16 -

then the worst case traffic profiles and maximum traffic loads that a stats server will cope with can be pre-
dicted. (Which could be put another way − that any stats server is only reliable up to a given load of traf-
fic, and it would probably be useful to know what that load is :)

8 Ancillary Info

8.1 Time
8.2 System Downtime
8.3 Anomaly Tagging
8.4 Config Version Tagging

Here are things we should be doing but aren’t, or are still developing.

8.1 Time

A network stats server must have a reliable time source, particularly if the information collected is used to
generate bills. Installing the NTP suite is a suitable solution.

8.2 System Downtime

What we miss is as important as what we get. Every report must note server downtime, and, where possi-
ble, estimate the effect of this on recorded results. Even merely registering downtime is a messy problem.
We identify three components: downtime due to

- platform failure (OS or hardware);
- stats system failure (s/w error or resource privation)
- interruptions in network connectivity.

Each of these requires its own method of monitoring and logging.

8.3 Anomaly Tagging

There are a range of situations that are useful to keep in mind when viewing stats − eg, interruptions to log-
ging, network storms, partial network failures, connection of new services, and changes in filtering policy.
This information tends not to be collated anywhere. It is useful not only to log these events consistently,
but to hav e some way of tagging potentially anomalous data with cross-references to the related events.

8.4 Config Version Tagging

Unfortunately, different postprocessing functionality is sometimes required in different config versions.
Most simply, when new objects are logged, they must be processed. Changes in the config must be logged.
For any project that will last longer than a few months it would be worth considering using the config ver-
sion to tag the data, and enabling automatic selection of an appropriate postprocessing regime.

9 Conclusions

Nothing is as simple as it seems. Even given perfect network stats software, some ancillary information is
required (eg, downtime). As far as possible, inclusion of ancillary information should be automated, as it is
inordinately fiddly and time-consuming to collate manually.

It has proved to be practical to log type-of-service information, with the local side resolved to the subnet,
for a class B network with class C netmask.

Subnet-level resolution is probably insufficient for billing purposes, particularly if billing at a departmental
level rather than faculty level.

It is not known whether increasing resolution of local peer to the level of local hosts is practical on the cur-
rent server platform. This can be investigated when the developmental server is configured.

The primary restrictions on expanding the stats system are expected to be CPU time and disk space.

